Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Clin Lab Anal ; 36(2): e24242, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1616016

ABSTRACT

BACKGROUND: Currently, SARS-CoV-2 RNA detection using real-time reverse-transcription PCR (rRT-PCR) is the standard diagnostic test for COVID-19 infection. Various rRT-PCR assays are currently used worldwide, targeting different genes of the SARS-CoV-2. Here, we compared the analytical sensitivity and clinical performance (sensitivity and specificity) of Allplex SARS-CoV-2/FluA/FluB/RSV assay (Seegene), Standard M nCoV real-time detection kit (SD Biosensor), and U-TOP COVID-19 detection kit (Seasun Biomaterials) for SARS-CoV-2 detection. METHODS: Two hundred and forty-nine nasopharyngeal swab samples were evaluated to compare the clinical performance of the rRT-PCR assays. For the analytical performance evaluation, two RNA controls with known viral loads-SARS-CoV-2 RNA control and SARS-COV-2 B.1.351 RNA control-were used to investigate the potential impact of SARS-CoV-2 variants, particularly the B.1.351 lineage. RESULTS: Limits of detection ranged from 650 to 1300 copies/ml for rRT-PCR assays, and the mean differences in cycle threshold (Ct ) values of the two RNA controls were within 1.0 for each target in the rRT-PCR assays (0.05-0.73), without any prominent Ct value shift or dropouts in the SARS-COV-2 B.1.351 RNA control. Using the consensus criterion as the reference standard, 89 samples were positive, whereas 160 were negative. The overall clinical performance of rRT-PCR assays was comparable (sensitivity 98.88%-100%; specificity 99.38%-100%), whereas the sensitivities of each target gene were more variable. CONCLUSIONS: The three rRT-PCR assays showed comparable analytical sensitivity and clinical performance. The analytical and clinical sensitivities of each target gene were influenced more by the primer and probe design than the target gene itself.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques , Reagent Kits, Diagnostic/virology , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Nasopharynx/virology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Viral Load , Young Adult
2.
J Clin Lab Anal ; 36(2): e24226, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611241

ABSTRACT

INTRODUCTION: RT-PCR is widely used as a diagnostic test for the detection of SARS-CoV-2. In this study, we aim to describe the clinical utility of serial PCR testing in the final detection of COVID-19. METHOD: We collected multiple nasopharyngeal swab samples from patients who had negative RT-PCR test on the first day after hospitalization. RT-PCR tests were performed on the second day for all patients with initial negative result. For the patients with secondary negative results on day 2, tertiary RT-PCR tests were performed on day 3 after hospitalization. RESULT: Among 68 patients with initial negative test results, at the end of follow-up, the mortality number was 20 (29.4%). About 33.8% of patients had subsequent positive PCR test results for the second time and 17.4% of the patients who performed third PCR test had positive result. CONCLUSION: Based on this study, serial RT-PCR testing is unlikely to yield additional information.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Aged , Aged, 80 and over , False Negative Reactions , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Molecular Diagnostic Techniques/statistics & numerical data , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Real-Time Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2/isolation & purification
3.
J Clin Virol ; 127: 104383, 2020 06.
Article in English | MEDLINE | ID: covidwho-1385847

ABSTRACT

BACKGROUND: Numerous nucleic acid amplification assays have recently received emergency use authorization (EUA) for the diagnosis of SARS-CoV-2 infection, and there is a need to assess their test performance relative to one another. OBJECTIVES: The aim of this study was to compare the test performance of the Hologic Panther Fusion SARS-CoV-2 assay targeting two regions of open reading frame 1ab (ORF1ab) to a high complexity molecular-based, laboratory-developed EUA from Stanford Health Care (SHC) targeting the SARS-CoV-2 envelope (E) gene. STUDY DESIGN: We performed a diagnostic comparison study by testing nasopharyngeal samples on the two assays. Assay agreement was assessed by overall percent agreement and Cohen's kappa coefficient. RESULTS: A total of 184 nasopharyngeal samples were tested using the two assays, of which 180 showed valid results and were included for the comparative analysis. Overall percent agreement between the assays was 98.3 % (95 % confidence interval (CI) 95.2-99.7) and kappa coefficient was 0.97 (95 % CI 0.93-1.0). One sample was detected on the SHC laboratory developed test (LDT) and not on the Panther Fusion, and had a Ct of 35.9. Conversely, 2 samples were detected on the Panther Fusion and not on the LDT, and had Ct values of 37.2 and 36.6. CONCLUSION: The Panther Fusion SARS-CoV-2 assay and the SHC LDT perform similarly on clinical nasopharyngeal swab specimens. Other considerations, including reagent availability, turnaround time, labor requirements, cost and instrument throughput should guide the decision of which assay to perform.


Subject(s)
Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Pneumonia, Viral/diagnosis , Reagent Kits, Diagnostic/standards , Viral Envelope Proteins/isolation & purification , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Humans , Nasopharynx/virology , Pandemics , Reproducibility of Results , SARS-CoV-2 , Viral Envelope Proteins/genetics
4.
Sci Rep ; 11(1): 16201, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1351977

ABSTRACT

Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·[Formula: see text]L-1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.


Subject(s)
Image Processing, Computer-Assisted/methods , Lentivirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Spectroscopy, Near-Infrared/methods , HEK293 Cells , Humans , Image Processing, Computer-Assisted/standards , Lentivirus/isolation & purification , Lentivirus/pathogenicity , Lentivirus Infections/virology , Molecular Diagnostic Techniques/standards , Point-of-Care Systems , Saliva/virology , Sensitivity and Specificity , Spectroscopy, Near-Infrared/standards
5.
Sci Rep ; 11(1): 16193, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1351975

ABSTRACT

We have optimised a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2 from extracted RNA for clinical application. We improved the stability and reliability of the RT-LAMP assay by the addition of a temperature-dependent switch oligonucleotide to reduce self- or off-target amplification. We then developed freeze-dried master mix for single step RT-LAMP reaction, simplifying the operation for end users and improving long-term storage and transportation. The assay can detect as low as 13 copies of SARS-CoV2 RNA per reaction (25-µL). Cross reactivity with other human coronaviruses was not observed. We have applied the new RT-LAMP assay for testing clinical extracted RNA samples extracted from swabs of 72 patients in the UK and 126 samples from Greece and demonstrated the overall sensitivity of 90.2% (95% CI 83.8-94.7%) and specificity of 92.4% (95% CI 83.2-97.5%). Among 115 positive samples which Ct values were less than 34, the RT-LAMP assay was able to detect 110 of them with 95.6% sensitivity. The specificity was 100% when RNA elution used RNase-free water. The outcome of RT-LAMP can be reported by both colorimetric detection and quantifiable fluorescent reading. Objective measures with a digitized reading data flow would allow for the sharing of results for local or national surveillance.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , COVID-19 Nucleic Acid Testing/standards , Humans , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , Sensitivity and Specificity
6.
Biomed Res Int ; 2021: 5516344, 2021.
Article in English | MEDLINE | ID: covidwho-1343983

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of pneumonia spreading around the world, leading to serious threats to public health and attracting enormous attention. There is an urgent need for sensitive diagnostic testing implementation to control and manage SARS-CoV-2 in public health laboratories. The quantitative reverse transcription PCR (RT-qPCR) assay is the gold standard method, but the sensitivity and specificity of SARS-CoV-2 testing are dependent on a number of factors. METHODS: We synthesized RNA based on the genes published to estimate the concentration of inactivated virus samples in a biosafety level 3 laboratory. The limit of detection (LOD), linearity, accuracy, and precision were evaluated according to the bioanalytical method validation guidelines. RESULTS: We found that the LOD reached around 3 copies/reaction. Furthermore, intra-assay precision, accuracy, and linearity met the accepted criterion with an RSD for copies of less than 25%, and linear regression met the accepted R 2 of 0.98. CONCLUSIONS: We suggest that synthesized RNA based on the database of the NCBI gene bank for estimating the concentration of inactivated virus samples provides a potential opportunity for reliable testing to diagnose coronavirus disease 2019 (COVID-19) as well as limit the spread of the disease. This method may be relatively quick and inexpensive, and it may be useful for developing countries during the pandemic era. In the long term, it is also applicable for evaluation, verification, validation, and external quality assessment.


Subject(s)
COVID-19/virology , Molecular Diagnostic Techniques/standards , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Developing Countries/statistics & numerical data , Humans , Molecular Diagnostic Techniques/methods , Pandemics , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Validation Studies as Topic
7.
Przegl Epidemiol ; 75(1): 14-26, 2021.
Article in English | MEDLINE | ID: covidwho-1335556

ABSTRACT

INTRODUCTION: Since the SARS-CoV-2 emergence in 2019/2020, at least 158 million infections with this pathogen have been recorded, of which 3.29 million infected people have died. Due to the non-specific symptoms of SARS-CoV-2 infection, laboratory tests based on RT-PCR (reverse transcription and polymerase chain reaction) are mainly used in the diagnosis of COVID-19 disease. AIM: The aim of this study is to compare the molecular tests available on the Polish market for the diagnosis of SARS-CoV2 infection. RESULTS: Based on the data provided by the manufacturers and the performed laboratory analyses, we have shown that the available diagnostic kits differ mainly in the sensitivity and duration of the reaction. CONCLUSION: Due to the ongoing COVID-19 pandemic, the indicated parameters are key to effective control of the spread of SARS-CoV2, and therefore should be mainly taken into account when choosing and purchasing by diagnostic centres.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Load , Humans , Poland , Sensitivity and Specificity
8.
Sci Rep ; 11(1): 13378, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286471

ABSTRACT

The highly infectious nature of SARS-CoV-2 necessitates the use of widespread testing to control the spread of the virus. Presently, the standard molecular testing method (reverse transcriptase-polymerase chain reaction, RT-PCR) is restricted to the laboratory, time-consuming, and costly. This increases the turnaround time for getting test results. This study sought to develop a rapid, near-patient saliva-based test for COVID-19 (Saliva-Dry LAMP) with similar accuracy to that of standard RT-PCR tests. A lyophilized dual-target reverse transcription-loop-mediated isothermal amplification (RT-LAMP) test with fluorometric detection by the naked eye was developed. The assay relies on dry reagents that are room temperature stable. A device containing a centrifuge, heat block, and blue LED light system was manufactured to reduce the cost of performing the assay. This test has a limit of detection of 1 copy/µL and achieved a positive percent agreement of 100% [95% CI 88.43% to 100.0%] and a negative percent agreement of 96.7% [95% CI 82.78-99.92%] relative to a reference standard test. Saliva-Dry LAMP can be completed in 105 min. Precision, cross-reactivity, and interfering substances analysis met international regulatory standards. The combination of ease of sample collection, dry reagents, visual detection, low capital equipment cost, and excellent analytical sensitivity make Saliva-Dry LAMP particularly useful for resource-limited settings.


Subject(s)
COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , Saliva/virology , COVID-19/virology , Fluorometry , Humans , Limit of Detection , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/standards , RNA, Viral/standards , Reference Standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Temperature
9.
Am J Trop Med Hyg ; 105(2): 375-377, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1270184

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Colorimetry/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Colorimetry/standards , Humans , Molecular Diagnostic Techniques/standards , Nasopharynx/virology , Nucleic Acid Amplification Techniques/standards , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
10.
Pan Afr Med J ; 38: 68, 2021.
Article in English | MEDLINE | ID: covidwho-1154825

ABSTRACT

Efforts towards slowing down coronavirus (COVID-19) transmission and reducing mortality have focused on timely case detection, isolation and treatment. Availability of laboratory COVID-19 testing capacity using reverse-transcriptase polymerase chain reaction (RT-PCR) was essential for case detection. Hence, it was critical to establish and expand this capacity to test for COVID-19 in Ethiopia. To this end, using a three-phrased approach, potential public and private laboratories with RT-PCR technology were assessed, capacitated with trained human resource and equipped as required. These laboratories were verified to conduct COVID-19 testing with quality assurance checks regularly conducted. Within a 10-month period, COVID-19 testing laboratories increased from zero to 65 in all Regional States with the capacity to conduct 18,454 tests per day. The success of this rapid countrywide expansion of laboratory testing capacity for COVID-19 depended on some key operational implications: the strong laboratory coordination network within the country, the use of non-virologic laboratories, investment in capacity building, digitalization of the data for better information management and establishing quality assurance checks. A weak supply chain for laboratory reagents and consumables, differences in the brands of COVID-19 test kits, frequent breakdowns of the PCR machines and inadequate number of laboratory personnel following the adaption of a 24/7 work schedule were some of the challenges experienced during the process of laboratory expansion. Overall, we learn that multisectoral involvement of laboratories from non-health sectors, an effective supply chain system with an insight into the promotion of local production of laboratory supplies were critical during the laboratory expansion for COVID-19 testing. The consistent support from WHO and other implementing partners to Member States is needed in building the capacity of laboratories across different diagnostic capabilities in line with International Health Regulations. This will enable efficient adaptation to respond to future public health emergencies.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Laboratories/standards , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , COVID-19 Testing/standards , Capacity Building , Equipment and Supplies/statistics & numerical data , Ethiopia , Humans , Laboratories/statistics & numerical data , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Quality Assurance, Health Care , Reverse Transcriptase Polymerase Chain Reaction/standards
11.
Cochrane Database Syst Rev ; 3: CD013705, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1147548

ABSTRACT

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission. OBJECTIVES: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. SEARCH METHODS: Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria). DATA COLLECTION AND ANALYSIS: Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS: Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset. AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Point-of-Care Systems , SARS-CoV-2/immunology , Adult , Asymptomatic Infections , Bias , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/standards , Child , Cohort Studies , False Negative Reactions , False Positive Reactions , Humans , Molecular Diagnostic Techniques/standards , Predictive Value of Tests , Reference Standards , Sensitivity and Specificity
12.
Vopr Virusol ; 66(1): 17-28, 2021 03 07.
Article in Russian | MEDLINE | ID: covidwho-1121949

ABSTRACT

This review presents the basic principles of application of the loop-mediated isothermal amplification (LAMP) reaction for the rapid diagnosis of coronavirus infection caused by SARS-CoV-2. The basic technical details of the method, and the most popular approaches of specific and non-specific detection of amplification products are briefly described. We also discuss the first published works on the use of the method for the detection of the nucleic acid of the SARS-CoV-2 virus, including those being developed in the Russian Federation. For commercially available and published LAMP-based assays, the main analytical characteristics of the tests are listed, which are often comparable to those based on the method of reverse transcription polymerase chain reaction (RT-PCR), and in some cases are even superior. The advantages and limitations of this promising methodology in comparison to other methods of molecular diagnostics, primarily RT-PCR, are discussed, as well as the prospects for the development of technology for the detection of other infectious agents.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , RNA, Viral/genetics , SARS-CoV-2/genetics , Artifacts , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , DNA Primers/genetics , DNA Primers/metabolism , DNA Probes/genetics , DNA Probes/metabolism , Humans , Reagent Kits, Diagnostic , Sensitivity and Specificity
13.
Expert Rev Mol Diagn ; 21(3): 269-288, 2021 03.
Article in English | MEDLINE | ID: covidwho-1096412

ABSTRACT

Introduction: Coronavirus disease 2019 (COVID-19), a respiratory illness caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had its first detection in December 2019 in Wuhan (China) and spread across the world. In March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic disease. The utilization of prompt and accurate molecular diagnosis of SARS-CoV-2 virus, isolating the infected patients, and treating them are the keys to managing this unprecedented pandemic. International travel acted as a catalyst for the widespread transmission of the virus.Areas covered: This review discusses phenotype, structural, and molecular evolution of recognition elements and primers, its detection in the laboratory, and at point of care. Further, market analysis of commercial products and their performance are also evaluated, providing new ways to confront the ongoing global public health emergency.Expert commentary: The outbreak for COVID-19 created mammoth chaos in the healthcare sector, and still, day by day, new epicenters for the outbreak are being reported. Emphasis should be placed on developing more effective, rapid, and early diagnostic devices. The testing laboratories should invest more in clinically relevant multiplexed and scalable detection tools to fight against a pandemic like this where massive demand for testing exists.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/physiology , Biomarkers , COVID-19/epidemiology , COVID-19/transmission , Disease Management , Evolution, Molecular , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques , Pandemics , Point-of-Care Testing , RNA, Viral
14.
Diagnosis (Berl) ; 8(3): 322-326, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1069653

ABSTRACT

OBJECTIVES: Novel point-of-care antigen assays present a promising opportunity for rapid screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The purpose of this study was the clinical assessment of the new Roche SARS-CoV-2 Rapid Antigen Test. METHODS: The clinical performance of Roche SARS-CoV-2 Rapid Antigen Test was evaluated vs. a reverse transcription polymerase chain reaction (RT-PCR) laboratory-based assay (Seegene AllplexTM2019-nCoV) in nasopharyngeal swabs collected from a series of consecutive patients referred for SARS-CoV-2 diagnostics to the Pederzoli Hospital (Peschiera del Garda, Verona, Italy) over a 2-week period. RESULTS: The final study population consisted of 321 consecutive patients (mean age, 46 years and IQR, 32-56 years; 181 women, 56.4%), with 149/321 (46.4%) positive for SARS-CoV-2 RNA via the Seegene AllplexTM2019-nCoV Assay, and 109/321 (34.0%) positive with Roche SARS-CoV-2 Rapid Antigen Test, respectively. The overall accuracy of Roche SARS-CoV-2 Rapid Antigen Test compared to molecular testing was 86.9%, with 72.5% sensitivity and 99.4% specificity. Progressive decline in performance was observed as cycle threshold (Ct) values of different SARS-CoV-2 gene targets increased. The sensitivity was found to range between 97-100% in clinical samples with Ct values <25, between 50-81% in those with Ct values between 25 and <30, but low as 12-18% in samples with Ct values between 30 and <37. CONCLUSIONS: The clinical performance of Roche SARS-CoV-2 Rapid Antigen Test is excellent in nasopharyngeal swabs with Ct values <25, which makes it a reliable screening test in patients with high viral load. However, mass community screening would require the use of more sensitive techniques.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/standards , COVID-19/diagnosis , COVID-19/virology , Molecular Diagnostic Techniques/standards , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Adult , Antigens, Viral/immunology , COVID-19/immunology , COVID-19 Nucleic Acid Testing/standards , Female , Humans , Italy , Male , Middle Aged , Nasopharynx/immunology , Nasopharynx/virology , Point-of-Care Systems , Sensitivity and Specificity , Viral Load
15.
Biomacromolecules ; 22(3): 1231-1243, 2021 03 08.
Article in English | MEDLINE | ID: covidwho-1062725

ABSTRACT

Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and inexpensive isothermal alternative to the current gold standard reverse transcription quantitative polymerase chain reaction (RT-qPCR) for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, unlike RT-qPCR, there are no consensus detection regions or optimal RT-LAMP methods, and most protocols do not include internal controls to ensure reliability. Naked RNAs, plasmids, or even RNA from infectious COVID-19 patients have been used as external positive controls for RT-LAMP assays, but such reagents lack the stability required for full-process control. To overcome the lack of proper internal and external positive controls and the instability of the detection RNA, we developed virus-like particles (VLPs) using bacteriophage Qß and plant virus cowpea chlorotic mottle virus (CCMV) for the encapsidation of target RNA, namely a so-called SARS-CoV-2 LAMP detection module (SLDM). The target RNA is a truncated segment of the SARS-CoV-2 nucleocapsid (N) gene and human RNase P gene (internal control) as positive controls for RT-qPCR and RT-LAMP. Target RNAs stably encapsidated in Qß and CCMV VLPs were previously shown to function as full-process controls in RT-qPCR assays, and here we show that SLDMs can fulfill the same function for RT-LAMP and swab-to-test (direct RT-LAMP with heat lysis) assays. The SLDM was validated in a clinical setting, highlighting the promise of VLPs as positive controls for molecular assays.


Subject(s)
Bromovirus , COVID-19 Nucleic Acid Testing/standards , COVID-19 , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , SARS-CoV-2/genetics , Bromovirus/chemistry , Bromovirus/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans
16.
Eur J Clin Microbiol Infect Dis ; 40(6): 1303-1308, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1053012

ABSTRACT

To face the COVID-19 pandemic, the need for fast and reliable diagnostic assays for the detection of SARS-CoV-2 is immense. We describe our laboratory experiences evaluating nine commercially available real-time RT-PCR assays. We found that assays differed considerably in performance and validation before routine use is mandatory.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , Humans , Molecular Diagnostic Techniques/standards , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2
18.
Biochem Soc Trans ; 48(6): 2851-2863, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-917545

ABSTRACT

The ongoing COVID-19 pandemic has placed an overwhelming burden on the healthcare system, and caused major disruption to the world economy. COVID-19 is caused by SARS-CoV-2, a novel coronavirus that leads to a variety of symptoms in humans, including cough, fever and respiratory failure. SARS-CoV-2 infection can trigger extensive immune responses, including the production of antibodies. The detection of antibody response by serological testing provides a supplementary diagnostic tool to molecular tests. We hereby present a succinct yet comprehensive review on the antibody response to SARS-CoV-2 infection, as well as molecular mechanisms behind the strengths and limitations of serological antibody tests. The presence of antibodies can be detected in patient sera within days post symptom onset. Serological tests demonstrate superior sensitivity to molecular tests in some periods of time during disease development. Compared with the molecular tests, serological tests can be used for point-of-care testing, providing faster results at a lower cost. Commercially available serological tests show variable sensitivity and specificity, and the molecular basis of these variabilities are analysed. We discuss assays of different complexities that are used to specifically quantitate neutralising antibodies against SARS-CoV-2, which has important implications for vaccine development and herd immunity. Furthermore, we discuss examples of successful applications of serological tests to contact tracing and community-level sero-surveying, which provide invaluable information for pandemic management and assessment.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Pandemics , Reproducibility of Results , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Sensitivity and Specificity , Serologic Tests/methods , Serologic Tests/standards , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
J Clin Microbiol ; 58(11)2020 10 21.
Article in English | MEDLINE | ID: covidwho-889842

ABSTRACT

The coronavirus disease (COVID-19) pandemic has placed the clinical laboratory and testing for SARS-CoV-2 front and center in the worldwide discussion of how to end the outbreak. Clinical laboratories have responded by developing, validating, and implementing a variety of molecular and serologic assays to test for SARS-CoV-2 infection. This has played an essential role in identifying cases, informing isolation decisions, and helping to curb the spread of disease. However, as the demand for COVID-19 testing has increased, laboratory professionals have faced a growing list of challenges, uncertainties, and, in some situations, controversy, as they have attempted to balance the need for increasing test capacity with maintaining a high-quality laboratory operation. The emergence of this new viral pathogen has raised unique diagnostic questions for which there have not always been straightforward answers. In this commentary, the author addresses several areas of current debate, including (i) the role of molecular assays in defining the duration of isolation/quarantine, (ii) whether the PCR cycle threshold value should be included on patient reports, (iii) if specimen pooling and testing by research staff represent acceptable solutions to expand screening, and (iv) whether testing a large percentage of the population is feasible and represents a viable strategy to end the pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Services/standards , Coronavirus Infections/prevention & control , Humans , Mass Screening , Medical Laboratory Personnel/standards , Molecular Diagnostic Techniques/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Polymerase Chain Reaction/standards , Quarantine/standards , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling
20.
Am J Trop Med Hyg ; 103(6): 2350-2352, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-887652

ABSTRACT

A simple and rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of SARS-CoV-2. The RT-LAMP assay was highly specific for SARS-CoV-2 and was able to detect one copy of transcribed SARS-CoV-2 RNA within 24 minutes. Assay validation performed using 50 positive and 32 negative clinical samples showed 100% sensitivity and specificity. The RT-LAMP would be valuable for clinical diagnosis and epidemiological surveillance of SARS-CoV-2 infection in resource-limited areas as it does not require the use of sophisticated and costly equipment.


Subject(s)
COVID-19 Testing/standards , COVID-19/diagnosis , COVID-19/epidemiology , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/mortality , COVID-19/transmission , COVID-19 Testing/methods , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Reverse Transcription , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL